# We'll create a simple index variable as a sum of a series of related
# variables. This makes sense if all the variables are on the same
# answer set and if we can identify an order to the answer set -- that
# is, the level of measurement is ordinal.
#
# It will be necessary to recode the variables in this example prior
# to creating the sum score.
ANES2012<-read.csv("http://www.courseserve.info/files/ANES2012r.csv")
attach(ANES2012)
# We'll use a series of questions measuring attitude toward federal
# spending. The original variables are measured on a three point answer
# set, where 1=increase, 2=decrease, and 3=keep same. We can consider
# this an ordinal scale, from liberal to conservative (with regard to
# the role of government), if we recode to put the 'keep same' answer
# in the middle.
spend1=0; spend1[fedspend_ss==1]<-2; spend1[fedspend_ss==2]<-0; spend1[fedspend_ss==3]<-1
spend2=0; spend2[fedspend_schools==1]<-2; spend2[fedspend_schools==2]<-0; spend2[fedspend_schools==3]<-1
spend3=0; spend3[fedspend_scitech==1]<-2; spend3[fedspend_scitech==2]<-0; spend3[fedspend_scitech==3]<-1
spend4=0; spend4[fedspend_crime==1]<-2; spend4[fedspend_crime==2]<-0; spend4[fedspend_crime==3]<-1
spend5=0; spend5[fedspend_welfare==1]<-2; spend5[fedspend_welfare==2]<-0; spend5[fedspend_welfare==3]<-1
spend6=0; spend6[fedspend_child==1]<-2; spend6[fedspend_child==2]<-0; spend6[fedspend_child==3]<-1
spend7=0; spend7[fedspend_poor==1]<-2; spend7[fedspend_poor==2]<-0; spend7[fedspend_poor==3]<-1
spend8=0; spend8[fedspend_enviro==1]<-2; spend8[fedspend_enviro==2]<-0; spend8[fedspend_enviro==3]<-1
# Now we can create an index variable by summing the new spendX variables.
spending<-spend1+spend2+spend3+spend4+spend5+spend6+spend7+spend8
# Let's look at another example of recoding.
married=0; married<-ifelse(dem_marital==1,1,0)